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research methods (Fan and Machemehl, 2004, Jánošíková et al., 2012, Janáček and 
Koháni, 2010) or a computer simulation (Erath et al., 2013). 

There is a widespread belief that the waiting time depends on the line frequency. 
That is why in several studies regarding public transport quality only frequency is 
considered (e.g. Hensher et al., 2003; Eboli and Mazzulla, 2008a, 2008b). Published 
mathematical models of waiting time consider both the headway and the arrival time (or 
waiting time) as random variables. The most simple model is based on the assumption 
that passengers do not know the timetables, they arrive to the original stop randomly, 
and the mean waiting time is proportional to the headway (inversely proportional to the 
line frequency, respectively). Under the assumption that passengers arrive at a constant 
rate, the waiting time is a function of the mean headway and its variance:  

 

     
 

,1
2 2









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HDHE
WE  (1) 

 
where E(W) denotes the mean waiting time, E(H) the mean headway and D(H) the 
headway variance.  

When a transportation service operates with long headways, passengers do not arrive 
at stops randomly but they tend to arrive few minutes before the planned vehicle 
departure. Previous studies performed in Europe in the 1970s (for the survey, see Luethi 
et al., 2006) and in the U.S.A. (Fan and Machemehl, 2004) were aimed at the 
determination of the minimum headway with non-random arrival pattern and the model 
for the relationship between the waiting time and the headway. The headway threshold 
varied from 5 to 12 minutes and the models were linear or quadratic. The recent 
European study was carried out in Zürich by Luethi et al. (2006). Passengers were 
supposed to belong to one of two groups: those who were familiar with the schedule and 
those who did not know the schedule. As a consequence, the authors suggest an arrival 
rate model that combines the uniform distribution for informed passengers with the 
shifted Johnson SB distribution for uninformed passengers. The Johnson distribution is 
shifted with a small value due to the observation that some passengers arrive short time 
after the vehicle departure. The reported share of these passengers is quite high (from 5 
to 16 %). The authors explain passengers’ early arrivals by the fact that passengers do 
not trust the service reliability and rely on a regular delay but then they do not catch the 
bus. Passengers waiting the whole period would be observed also if they failed to board 
due to the insufficient vehicle capacity. Regarding the dependence of the mean waiting 
time on the headway, Luethi et al. propose the logarithmic model.  

 

2. Methodology 

The first goal of our study was to find out whether the waiting time depends on the 
headway even in the case of reliable service with the sufficient capacity of vehicles and 
with passengers being familiar with the schedules. We proceeded from the situation in 
the Slovak Republic, which is similar to most European countries, where the public 
transport users are well-informed. The timetables are available at the stops as well as on 
the Internet, so passengers are able to obtain schedule information almost everywhere 
by using new information technologies. 
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As it was said before, both the waiting time (or passengers’ arrival time, 
respectively) and the headway are random variables. The dependence of the random 
variables is the matter of the correlation analysis. The measure of the dependence 
between two random variables X and Y is a so called correlation coefficient ρ(X,Y). It is 
obtained by dividing the covariance of the two variables by the product of their standard 
deviations. The correlation coefficient ranges from −1 to 1. The value of 0 implies that 
there is no linear correlation between the variables. If ρ(X,Y)  0, then X and Y are 
dependent. The value of 1 implies that the linear equation describes the relationship 
between X and Y perfectly, with all data points lying on the line for which Y increases as 
X increases. The value of −1 implies that all data points lie on the line for which Y 
decreases as X increases.  

To find ρ(X,Y) we need to know the probability distributions of the variables. 
However, the probability distributions are unknown in practice. We usually have 
observed or measured only a realization of the sample, i.e. n values (xi, yi). These values 
can be used to estimate ρ(X,Y) by the Pearson correlation coefficient: 
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where x  and y  are arithmetic means of the values xi and yi, respectively. 
Because some properties of this estimate depend on the probability distribution of the 

pair (X, Y), another estimate of ρ(X,Y) was designed, which does not depend on the joint 
distribution of (X, Y). It is called the Spearman correlation coefficient, and it is based on 
the ranks of values xi and yi. The values xi and yi are sorted in a non-decreasing order: x1  

  x2   …   xn and y1    y2   …  yn, respectively. Let us denote the ranks of the values 
xi and yi by ri and qi, respectively. The similarity between ranks ri and qi shows the 
relationship between the values xi and yi. The Spearman correlation coefficient is given 
by the following term: 
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The estimated correlation coefficients RX,Y and RS are almost always different from 
zero. Therefore a statistical test should be preformed to verify whether their value is 
statistically significant. The null hypothesis  

H0:  = 0 (correlation is insignificant) 
is tested against the alternative hypothesis 

H:   0. 
Several tests with different test criteria are available. The test criteria are functions of 

the estimated correlation coefficient. 
The first test is based on the assumption that the sample of the pairs (xi, yi) for i = 1, 

..., n comes from the two-dimensional normal distribution with the correlation 
coefficient . The test criterion   

 
2

,

,

1

2

YX

YX

R

nR
T




  (4) 

has the Student’s t distribution with n – 2 degrees of freedom under the null hypothesis. 
The second test is based on the same assumption as the normal distribution. The test 

uses the Fisher z transformation that converts the Pearson correlation coefficient to the 
variable Z. The formula for the transformation is: 
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Z is approximately normally distributed with the mean 
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has the standard normal distribution N(0,1) under the null hypothesis. 
If the assumption of the above mentioned tests is not met, the nonparametric test for 

the Spearman correlation coefficient can be used. The value Rs is compared with the 
tabulated critical value r. If │RS│ ≤  rα, then the null hypothesis is accepted. 

 Further, the confidence interval of the correlation coefficient can be calculated using 
Fisher Z variable. The 100(1-) % confidence interval of the theoretical correlation 
coefficient  is defined as follows: 
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where z is the value of the inverse distribution function of the standard normal 

distribution N(0,1) at the point 
2

2 
, and the function tgh(x) is the hyperbolic tangent: 
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In the case that random variables X and Y are dependent, one can describe their 
relationship by a regression function. The most simple form of the regression function 
is the linear function y = ax +  b, where a and b are unknown coefficients that need to 
be estimated. The most common method of estimation is the least squares method. 
Using this method we get the following estimates: 
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The point estimates (8) and (9) should be contrasted with confidence intervals. These 
can be constructed under the following assumptions: 

1. values yi are independent; 
2. for every xi the values yi have the normal distribution N(, ) with mean  = axi 

+ b and variance 2 identical for all xi.  
Then estimates a  and b


 have also the normal distribution with the following 

characteristics: 
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where 
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The variance 2 is not known and it must be estimated by 
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The corresponding 100(1-) % confidence intervals are then as follows: 
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where 2nt  is the critical value of the Student t distribution with n – 2 degrees of 
freedom.  

Using these confidence intervals we can test the hypothesis about nonzero values of 
the coefficient. It means that regarding the coefficient a, the null hypothesis  

H0: a = 0 (the coefficient is insignificant) 
is tested against the alternative hypothesis 

H: a  0. 
The null hypothesis is accepted if the confidence interval contains 0, i.e. 

22

2
,

2
0 





 n

X

n

X

t
nS

at
nS

a 
 





.  

A similar test can be performed for the coefficient b of the regression function. 
The variability of the observed values yi can be measured through different sums of 

squares: 
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where bxay ii


 is the value on the regression line. Sy is the total sum of squares of 

deviations of the measured values yi from their mean, Sreg is the regression sum of 
squares, also called the explained fraction of variance, and Serr is the residual sum of 
squares, also called the unexplained fraction of variance. It holds errregy SSS  . The 

ratio  
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is a so called coefficient of determination. R2 is a statistics that will give some 
information about the goodness of fit of a model. It takes values between 0 an 1. The 
better the linear regression fits the data in comparison to the simple average, the closer 
the value of R2 is to one. An R2 of 1 indicates that the regression line fits the data 
perfectly. 

In addition to the R2 statistics, the model validation can be done through the F-test on 
the statistical significance of the regression model. 

Let us denote 
1


p

S
SS reg

reg  and 
pn

S
SS err

err 
 , where p is the number of regression 

parameters. The regression model is considered to be statistically significant if SSreg is 
significantly greater than SSerr. The null hypothesis  

H0:  SSreg = SSerr (the regression model is insignificant) 
is tested against the alternative hypothesis 

H: SSreg > SSerr. 
The test criterion  

err

reg

SS

SS
F   (20) 

has the Fisher-Snedecor distribution with the parameters v = p - 1 and w = n - p under 
the null hypothesis. 

The approach derived for the linear regression model can be applied for some non-
linear models as well, for example for the logarithmic function y = aln(x) + b. The 
method for the parameter estimation is the same; the only exception is that the 
logarithm ln(xi) is used instead of xi.  

 

3. Case study 

As a case study for passengers’ arrivals and waiting time modelling we chose the 
urban public transport in the city of Žilina. Žilina is a middle-sized city situated in the 
north-western part of the Slovak Republic. It has 81,494 inhabitants (by 2011), and 
covers the area of 80 km2. 

The transportation service in the city is provided by the transportation operator 
Dopravný podnik mesta Žiliny, s.r.o. (DPMŽ). During the day, 8 trolleybus lines and 10 
bus lines operate. At night, the city area is served by 1 bus line.  

The data for the analysis were collected at 6 stops in Žilina on weekdays during the 
morning peak and off-peak periods (from 6:00 to 11:00). The stops were selected 
according to the following criteria: 

 Passengers are not supposed to change lines at the stop. 
 The stop must be busy enough to enable collecting sufficient data. 

The data were collected “by hand”, i.e. by observing passengers’ arrivals at stops and 
recording the passenger’s arrival time, the number of the line taken by the passenger, 
and the vehicle departure time.  
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3.1 The results of the correlation analysis 
 
Using the measured data we want to determine whether there exists a relationship 

between passengers’ waiting time (random variable Y) and the line headway (random 
variable X). The size of the sample used in the following calculations is n = 467. 

The relationship is measured by the Pearson and Spearman correlation coefficients 
that were computed using the terms (2) and (3), and take the values RX,Y  = 0.134 and RS 
= 0.759. Both coefficients are different from zero, which means that the waiting time 
and the headway are related by the monotonic function. This finding can be verified by 
the test of significance of the theoretical correlation coefficient .  The null hypothesis  

H0:  = 0 (correlation is insignificant) 
is tested against the alternative hypothesis 

H:   0. 
at the level of significance  = 0.05. 

In the first two tests with the Pearson correlation coefficient it is assumed that the 
sample of pairs (X,Y) comes from the normal distribution. As regards the variable X (the 
line headway), it takes only several values, most often 10, 15,  20, and 30 minutes that 
are common in public transport operation and therefore it is impossible to make a test 
on its probability distribution. The sample of Y was tested on the probability distribution 
for particular headways xi (see Section 3.3). Although the chi-square test failed to reject 
the hypothesis about the normal distribution for some xi, for all data together the 
hypothesis was rejected at the significance level  = 0.05. Although the assumption of 
the first two tests was not proved, all three tests mentioned in Section 2 were performed.  

The value of the test criterion according to (4) is T = 2.919. It is greater than the 
critical value of the Student distribution for the significance level 0.05 and n-2 degrees 
of freedom (1.965), therefore we reject the null hypothesis H0 and accept the alternative 
hypothesis H that X and Y are dependent random variables. 

The value of the test criterion according to (6) is Z* = 2.907. It is greater than the 
critical value of the standard normal distribution for the significance level 0.05 (1.96), 
therefore we reject the null hypothesis H0 and accept the alternative hypothesis H that X 
and Y are dependent random variables. 

The same outcome is obtained using the third nonparametric test with the Spearman 
correlation coefficient. The value Rs = 0.759 is greater than the tabulated critical value 
r = 0.091, so the null hypothesis is rejected. 

Further, the confidence interval of the Pearson correlation coefficient can be 
calculated. According to (7), the 95% confidence interval is 0.044, 0.222. This interval 
includes the Pearson correlation coefficient RX,Y = 0.134. This fact confirms the 
correlation between the waiting time and the headway.  

  
3.2 The results of the regression analysis 

 
To specify the dependence mathematically, a regression function can be derived, 

which describes the dependence of the pair of random variables (X,Y). Using the least 
square method, a linear and a logarithmic functions were proposed, further the 
significance of coefficients was investigated and the quality of both models was 
examined using the F-test. 

The linear function was estimated as y = 0.088x + 3.932. The 95% confidence 
intervals of the coefficients are: a  0.029, 0.147, b  2.770, 5.095. None of the 
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intervals contains 0, therefore both coefficients a and b are significant. The F-test states 
the null hypothesis  

H0:  SSreg = SSerr (the regression model is insignificant) 
against the alternative hypothesis 

H: SSreg > SSerr. 
The value of the test criterion according to (20) is F = 8.521. It is greater than the 

critical value of the Fisher-Snedecor distribution with the parameters v = 1 and w = 465 
for the significance level 0.05 (F0.95(1,465) = 3.861), therefore we reject the null 
hypothesis H0 and accept the alternative hypothesis H that the explained fraction of 
variance is significantly greater than the unexplained fraction of variance. The 
coefficient of determination for this linear model is R2 = 0.018. 

The logarithmic function was estimated as y = 1.930ln(x) + 0.047. The 95% 
confidence intervals of the coefficients are: a  0.923, 2.937, b  -2.857, 2.950. The 
confidence interval for coefficient b contains 0, but this only means that the absolute 
part of the function may be zero, however the type of the function is still logarithmic. 

The value of the F-test criterion according to (20) is F = 14.185. It is greater than the 
critical value of the Fisher-Snedecor distribution (F0.95(1,465) = 3.861), therefore we 
reject the null hypothesis H0 and accept the alternative hypothesis H that the logarithmic 
model is statistically significant. The coefficient of determination is R2 = 0.030. 

The coefficients of determination for both regression models are quite small. It 
means that the values iy


 on the regression curve are far away from the observed values 

yi. The reason is that for each headway xi there were a lot of different waiting times yi 
observed, which can also be seen in Figures 1 and 2. In accordance with Luethi et al. 
(2006), the logarithmic dependence seems to be a better approximation of the 
relationship between the examined random variables. 

 

 
 

Figure 1. Linear regression 
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Figure 2. Logarithmic regression 
 
 

3.3 The distribution of the arrival rates 
 
The next step in our research was to specify the distribution of passengers’ arrivals 

for the most common headways (10, 15, 20, and 30 minutes). The random variable is 
now the time elapsed between the departure of the previous vehicle and the arrival of 
the passenger. The frequency diagrams of the passengers’ arrival times were constructed 
for each headway. The diagrams suggested that the Gumbel minimum distribution 
would be a suitable model. The formula for the probability density function (PDF) of 
the Gumbel minimum distribution is 
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for x  (-,); a  (-,) is the location parameter and b > 0 is the scale parameter. 
Using the Kolmogorov-Smirnov and the chi-square tests we can accept the 

hypothesis that the arrivals follow the Gumbel minimum distribution. Moreover, for the 
15-minute headway also the normal distribution was accepted by the tests. 

For illustration, Figures 3 to 6 display the relative frequencies of passengers’ arrivals 
and the PDF of the Gumbel minimum distribution for four most common headways. As 
it can be seen, the location parameter of the PDF strongly depends on the headway, 
since passengers tend to arrive at the boarding stop few minutes before the planned bus 
departure. Only a couple of passengers arrive at the beginning of the period. So we can 
conclude that most passengers are familiar with the timetables and adjust their arrivals 
to the schedule. 
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Figure 3. Passengers’ arrivals in 10-minute headway 
 
 

 

 
 

Figure 4. Passengers’ arrivals in 15-minute headway 
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Figure 5. Passengers’ arrivals in 20-minute headway 
 

 

 
 

Figure 6. Passengers’ arrivals in 30-minute headway 
 
 

4. Conclusions 

 
We proposed a methodology where statistical methods are used for the exploration of 

passengers’ arrivals at bus stops in urban public transport. The main results of our 
research are as follow: 

1. Passengers’ waiting time and line headway are correlated random variables. 
2. The relationship between this variables can be modelled by a linear function or 

better by a logarithmic function. 
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3. The Gumbel minimum distribution is the suitable mathematical model of 
passengers’ arrivals; the location parameter of the PDF strongly depends on the 
line headway.  

 The results can be generalized for every public transport system in which the users 
are well-informed. The proposed models are necessary in the operations research and 
simulation methods used for improving public transport quality. 
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