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Abstract

The paper presents statistical exploration of passengers’ arrivals at bus stops in urban public transport.
First, it describes the methodology which is applied on the urban public transport system, where the
following conditions are met: (i) passengers are familiar with the timetables, (ii) the vehicles run on time,
and (iii) the capacity of the vehicles is sufficient. The methodology is demonstrated on the urban public
transport in Zilina, Slovak Republic. The correlation analysis of the survey performed at transportation
stops in Zilina reveals that there is a correlation between the waiting time and headway. The relationship
between this variables can be modelled by a linear function or better by a logarithmic function. The
Kolmogorov-Smirnov and the chi-square tests accept the hypothesis that the Gumbel minimum
distribution is the suitable mathematical model of passengers’ arrivals rates. The proposed models are
necessary in the operations research and simulation methods used for public transport planning.
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1. Introduction

The paper describes the results of our research aimed at the behaviour of passengers
in urban public transport, particularly at their arrivals at bus stops. The research goal
was:

1. to determine whether there exists a relationship between passengers’ waiting
time and the line frequency (headway between the successive buses);

2. if the waiting time depends on the headway, to determine the mathematical
model of this dependence;

3. to propose a suitable mathematical model of passengers’ arrivals rate at a stop.

The time passengers spend at the stops waiting for a bus has been regarded as an
important criterion of the public transport system quality (see for example Osuna and
Newell, 1972; Daganzo, 1997; Avineri, 2004; Fan and Machemehl, 2004; Alvarez et al.,
2010). Therefore, it is important to know the aspects affecting passengers’ arrivals at the
stops in order to design an effective public transport system or to improve its quality.
Moreover, description of arrival patterns by mathematical models is necessary if one
wants to use sophisticated methods for public transport planning, such as operations
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research methods (Fan and Machemehl, 2004, Janosikova et al., 2012, Jana¢ek and
Kohéni, 2010) or a computer simulation (Erath et al., 2013).

There is a widespread belief that the waiting time depends on the line frequency.
That is why in several studies regarding public transport quality only frequency is
considered (e.g. Hensher et al., 2003; Eboli and Mazzulla, 2008a, 2008b). Published
mathematical models of waiting time consider both the headway and the arrival time (or
waiting time) as random variables. The most simple model is based on the assumption
that passengers do not know the timetables, they arrive to the original stop randomly,
and the mean waiting time is proportional to the headway (inversely proportional to the
line frequency, respectively). Under the assumption that passengers arrive at a constant
rate, the waiting time is a function of the mean headway and its variance:
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where E(W) denotes the mean waiting time, E(H) the mean headway and D(H) the
headway variance.

When a transportation service operates with long headways, passengers do not arrive
at stops randomly but they tend to arrive few minutes before the planned vehicle
departure. Previous studies performed in Europe in the 1970s (for the survey, see Luethi
et al., 2006) and in the U.S.A. (Fan and Machemehl, 2004) were aimed at the
determination of the minimum headway with non-random arrival pattern and the model
for the relationship between the waiting time and the headway. The headway threshold
varied from 5 to 12 minutes and the models were linear or quadratic. The recent
European study was carried out in Ziirich by Luethi et al. (2006). Passengers were
supposed to belong to one of two groups: those who were familiar with the schedule and
those who did not know the schedule. As a consequence, the authors suggest an arrival
rate model that combines the uniform distribution for informed passengers with the
shifted Johnson Sy distribution for uninformed passengers. The Johnson distribution is
shifted with a small value due to the observation that some passengers arrive short time
after the vehicle departure. The reported share of these passengers is quite high (from 5
to 16 %). The authors explain passengers’ early arrivals by the fact that passengers do
not trust the service reliability and rely on a regular delay but then they do not catch the
bus. Passengers waiting the whole period would be observed also if they failed to board
due to the insufficient vehicle capacity. Regarding the dependence of the mean waiting
time on the headway, Luethi et al. propose the logarithmic model.

2. Methodology

The first goal of our study was to find out whether the waiting time depends on the
headway even in the case of reliable service with the sufficient capacity of vehicles and
with passengers being familiar with the schedules. We proceeded from the situation in
the Slovak Republic, which is similar to most European countries, where the public
transport users are well-informed. The timetables are available at the stops as well as on
the Internet, so passengers are able to obtain schedule information almost everywhere
by using new information technologies.
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As it was said before, both the waiting time (or passengers’ arrival time,
respectively) and the headway are random variables. The dependence of the random
variables is the matter of the correlation analysis. The measure of the dependence
between two random variables X and Y is a so called correlation coefficient p(X,Y). It is
obtained by dividing the covariance of the two variables by the product of their standard
deviations. The correlation coefficient ranges from —1 to 1. The value of 0 implies that
there is no linear correlation between the variables. If p(X,Y) # 0, then X and Y are
dependent. The value of 1 implies that the linear equation describes the relationship
between X and Y perfectly, with all data points lying on the line for which Y increases as
X increases. The value of —1 implies that all data points lie on the line for which Y
decreases as X increases.

To find p(X,Y) we need to know the probability distributions of the variables.
However, the probability distributions are unknown in practice. We usually have
observed or measured only a realization of the sample, i.e. n values (x;, ;). These values
can be used to estimate p(X,Y) by the Pearson correlation coefficient:

Z:l:lxiyi —nxy
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where x and y are arithmetic means of the values x; and y;, respectively.

)

Because some properties of this estimate depend on the probability distribution of the
pair (X, Y), another estimate of p(X,Y) was designed, which does not depend on the joint
distribution of (X, Y). It is called the Spearman correlation coefficient, and it is based on
the ranks of values x; and y;. The values x; and y; are sorted in a non-decreasing order: x;
<x <. < x,andy; £ yp <. <y, respectively. Let us denote the ranks of the values
x; and y; by r; and g;, respectively. The similarity between ranks »; and ¢; shows the
relationship between the values x; and y;. The Spearman correlation coefficient is given
by the following term:
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The estimated correlation coefficients Ryy and Ry are almost always different from
zero. Therefore a statistical test should be preformed to verify whether their value is
statistically significant. The null hypothesis

Hy: p= 0 (correlation is insignificant)
is tested against the alternative hypothesis
H: p#0.

Several tests with different test criteria are available. The test criteria are functions of
the estimated correlation coefficient.

The first test is based on the assumption that the sample of the pairs (x;, y;) for i = 1,
..., n comes from the two-dimensional normal distribution with the correlation
coefficient p. The test criterion

Ry y~\n=2

. “4)

has the Student’s ¢ distribution with n — 2 degrees of freedom under the null hypothesis.

The second test is based on the same assumption as the normal distribution. The test
uses the Fisher z transformation that converts the Pearson correlation coefficient to the
variable Z. The formula for the transformation is:

T =
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The test criterion
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2 1-R,,
has the standard normal distribution N(0,1) under the null hypothesis.
If the assumption of the above mentioned tests is not met, the nonparametric test for
the Spearman correlation coefficient can be used. The value R; is compared with the
tabulated critical value r,. If | RS| < r,, then the null hypothesis is accepted.
Further, the confidence interval of the correlation coefficient can be calculated using
Fisher Z variable. The 100(1-a) % confidence interval of the theoretical correlation

coefficient pis defined as follows:

pE <tgh(Z - \/%), tgh(Z + J:”‘?) , (7)

where z, is the value of the inverse distribution function of the standard normal

(6)

distribution N(0,1) at the point & , and the function tgh(x) is the hyperbolic tangent:

e'—e”
teh(x)= -

In the case that random variables X and Y are dependent, one can describe their
relationship by a regression function. The most simple form of the regression function
is the linear function y = ax + b, where a and b are unknown coefficients that need to
be estimated. The most common method of estimation is the least squares method.
Using this method we get the following estimates:

n n n
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The point estimates (8) and (9) should be contrasted with confidence intervals. These
can be constructed under the following assumptions:
1. values y; are independent;
2. for every x; the values y; have the normal distribution N(z, o) with mean u = ax;
+ b and variance o identical for all X;.

®)

Then estimates @ and b have also the normal distribution with the following
characteristics:
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The variance o is not known and it must be estimated by
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The corresponding 100(1-at) % confidence intervals are then as follows:
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where ¢~ is the critical value of the Student ¢ distribution with » — 2 degrees of

freedom.

Using these confidence intervals we can test the hypothesis about nonzero values of
the coefficient. It means that regarding the coefficient a, the null hypothesis

Hy: a = 0 (the coefficient is insignificant)
1s tested against the alternative hypothesis

H:a=+0.

The null hypothesis is accepted if the confidence interval contains 0, i.e.

0 c El\ n -2 , a n -2
< S.n-2 n— e S,n-2 n— >
A similar test can be performed for the coefficient b of the regression function.

The variability of the observed values y; can be measured through different sums of
squares:

S, =i(y,»—i)2 (16)
S =20, 7F (7
S =Y (- 5) (18)

i=1
where y, =ax, + b is the value on the regression line. S, is the total sum of squares of

deviations of the measured values y; from their mean, S,.; is the regression sum of
squares, also called the explained fraction of variance, and S,,, is the residual sum of
squares, also called the unexplained fraction of variance. It holds S, =S, +S,,.. The

ratio
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R’ = Sres (19)
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is a so called coefficient of determination. R is a statistics that will give some

information about the goodness of fit of a model. It takes values between 0 an 1. The

better the linear regression fits the data in comparison to the simple average, the closer

the value of R” is to one. An R of 1 indicates that the regression line fits the data
perfectly.

In addition to the R statistics, the model validation can be done through the F-test on

the statistical significance of the regression model.

Let us denote SS,,, = Lgl and SS,, = S , where p is the number of regression
p- n-p

parameters. The regression model is considered to be statistically significant if SS,., is
significantly greater than SS.,,.. The null hypothesis

Hpy: 8S,eq = SSe (the regression model is insignificant)
1s tested against the alternative hypothesis

H: 8S;eg> SSerr.
The test criterion

F = %5 (20)
- SS(}}’V
has the Fisher-Snedecor distribution with the parameters v=p - 1 and w = n - p under
the null hypothesis.
The approach derived for the linear regression model can be applied for some non-
linear models as well, for example for the logarithmic function y = aln(x) + b. The
method for the parameter estimation is the same; the only exception is that the

logarithm In(x;) is used instead of x;.

3. Case study

As a case study for passengers’ arrivals and waiting time modelling we chose the
urban public transport in the city of Zilina. Zilina is a middle-sized city situated in the
north-western part of the Slovak Republic. It has 81,494 inhabitants (by 2011), and
covers the area of 80 km®,

The transportation service in the city is provided by the transportation operator
Dopravny podnik mesta Ziliny, s.r.o. (DPMZ). During the day, 8 trolleybus lines and 10
bus lines operate. At night, the city area is served by 1 bus line.

The data for the analysis were collected at 6 stops in Zilina on weekdays during the
morning peak and off-peak periods (from 6:00 to 11:00). The stops were selected
according to the following criteria:

e Passengers are not supposed to change lines at the stop.
e The stop must be busy enough to enable collecting sufficient data.

The data were collected “by hand”, i.e. by observing passengers’ arrivals at stops and
recording the passenger’s arrival time, the number of the line taken by the passenger,
and the vehicle departure time.
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3.1 The results of the correlation analysis

Using the measured data we want to determine whether there exists a relationship
between passengers’ waiting time (random variable Y) and the line headway (random
variable X). The size of the sample used in the following calculations is n = 467.

The relationship is measured by the Pearson and Spearman correlation coefficients
that were computed using the terms (2) and (3), and take the values Ryy = 0.134 and Ry
= 0.759. Both coefficients are different from zero, which means that the waiting time
and the headway are related by the monotonic function. This finding can be verified by
the test of significance of the theoretical correlation coefficient p. The null hypothesis

Hy: p= 0 (correlation is insignificant)
is tested against the alternative hypothesis
H: p#0.
at the level of significance = 0.05.

In the first two tests with the Pearson correlation coefficient it is assumed that the
sample of pairs (X,Y) comes from the normal distribution. As regards the variable X (the
line headway), it takes only several values, most often 10, 15, 20, and 30 minutes that
are common in public transport operation and therefore it is impossible to make a test
on its probability distribution. The sample of Y was tested on the probability distribution
for particular headways x; (see Section 3.3). Although the chi-square test failed to reject
the hypothesis about the normal distribution for some x;, for all data together the
hypothesis was rejected at the significance level « = 0.05. Although the assumption of
the first two tests was not proved, all three tests mentioned in Section 2 were performed.

The value of the test criterion according to (4) is 7' = 2.919. It is greater than the
critical value of the Student distribution for the significance level 0.05 and n-2 degrees
of freedom (1.965), therefore we reject the null hypothesis Hy and accept the alternative
hypothesis H that X and Y are dependent random variables.

The value of the test criterion according to (6) is Z =2.907. 1t is greater than the
critical value of the standard normal distribution for the significance level 0.05 (1.96),
therefore we reject the null hypothesis Hy and accept the alternative hypothesis H that X
and Y are dependent random variables.

The same outcome is obtained using the third nonparametric test with the Spearman
correlation coefficient. The value Ry = 0.759 is greater than the tabulated critical value
ro=0.091, so the null hypothesis is rejected.

Further, the confidence interval of the Pearson correlation coefficient can be
calculated. According to (7), the 95% confidence interval is (0.044, 0.222). This interval
includes the Pearson correlation coefficient Ryy = 0.134. This fact confirms the
correlation between the waiting time and the headway.

3.2 The results of the regression analysis

To specify the dependence mathematically, a regression function can be derived,
which describes the dependence of the pair of random variables (X,Y). Using the least
square method, a linear and a logarithmic functions were proposed, further the
significance of coefficients was investigated and the quality of both models was
examined using the F-test.

The linear function was estimated as y = 0.088x + 3.932. The 95% confidence
intervals of the coefficients are: a € (0.029, 0.147), b € (2.770, 5.095). None of the
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intervals contains 0, therefore both coefficients a and b are significant. The F-test states
the null hypothesis

Ho: SSreq = SSer (the regression model is insignificant)
against the alternative hypothesis

H: §S)eq> SSerr.

The value of the test criterion according to (20) is /' = 8.521. It is greater than the
critical value of the Fisher-Snedecor distribution with the parameters v =1 and w = 465
for the significance level 0.05 (Foos5(1,465) = 3.861), therefore we reject the null
hypothesis Hy and accept the alternative hypothesis H that the explained fraction of
variance is significantly greater than the unexplained fraction of variance. The
coefficient of determination for this linear model is R* = 0.018.

The logarithmic function was estimated as y = 1.930In(x) + 0.047. The 95%
confidence intervals of the coefficients are: a € (0.923, 2.937), b € (-2.857, 2.950). The
confidence interval for coefficient » contains 0, but this only means that the absolute
part of the function may be zero, however the type of the function is still logarithmic.

The value of the F-test criterion according to (20) is F'= 14.185. It is greater than the
critical value of the Fisher-Snedecor distribution (Fs5(1,465) = 3.861), therefore we
reject the null hypothesis Hy and accept the alternative hypothesis H that the logarithmic
model is statistically significant. The coefficient of determination is R* = 0.030.

The coefficients of determination for both regression models are quite small. It
means that the values y, on the regression curve are far away from the observed values

vi. The reason is that for each headway x; there were a lot of different waiting times y;
observed, which can also be seen in Figures 1 and 2. In accordance with Luethi et al.
(2006), the logarithmic dependence seems to be a better approximation of the
relationship between the examined random variables.

25

¢ Waiting time

e L in. reg.

Waiting time [min]

0 5 10 15 20 25 30 35

Line headway [min]

Figure 1. Linear regression
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Figure 2. Logarithmic regression

3.3 The distribution of the arrival rates

The next step in our research was to specify the distribution of passengers’ arrivals
for the most common headways (10, 15, 20, and 30 minutes). The random variable is
now the time elapsed between the departure of the previous vehicle and the arrival of
the passenger. The frequency diagrams of the passengers’ arrival times were constructed
for each headway. The diagrams suggested that the Gumbel minimum distribution
would be a suitable model. The formula for the probability density function (PDF) of
the Gumbel minimum distribution is

1 X—a X—a
/)= exp[ ; exp( . n 1)
for x € (-oc,o¢); a € (-oc,¢) is the location parameter and b > 0 is the scale parameter.

Using the Kolmogorov-Smirnov and the chi-square tests we can accept the
hypothesis that the arrivals follow the Gumbel minimum distribution. Moreover, for the
15-minute headway also the normal distribution was accepted by the tests.

For illustration, Figures 3 to 6 display the relative frequencies of passengers’ arrivals
and the PDF of the Gumbel minimum distribution for four most common headways. As
it can be seen, the location parameter of the PDF strongly depends on the headway,
since passengers tend to arrive at the boarding stop few minutes before the planned bus
departure. Only a couple of passengers arrive at the beginning of the period. So we can
conclude that most passengers are familiar with the timetables and adjust their arrivals
to the schedule.
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Figure 3. Passengers’ arrivals in 10-minute headway
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Figure 4. Passengers’ arrivals in 15-minute headway
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Figure 6. Passengers’ arrivals in 30-minute headway

4. Conclusions

We proposed a methodology where statistical methods are used for the exploration of
passengers’ arrivals at bus stops in urban public transport. The main results of our
research are as follow:

1. Passengers’ waiting time and line headway are correlated random variables.
2. The relationship between this variables can be modelled by a linear function or
better by a logarithmic function.

11
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3. The Gumbel minimum distribution is the suitable mathematical model of
passengers’ arrivals; the location parameter of the PDF strongly depends on the
line headway.

The results can be generalized for every public transport system in which the users

are well-informed. The proposed models are necessary in the operations research and
simulation methods used for improving public transport quality.
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