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1. Introduction 
Yield, revenue per unit of output sold, is a highly significant metric in the airline industry, but 
it is by definition just the mathematical outcome of two even more fundamental metrics: 
output sold and revenue earned. For more than five decades, real yields across the industry as 
a whole has been in decline and the price stimulus to which this has given rise accounts for a 
significant portion of the traffic growth achieved during the period (Netessine&Shumsky, 
2002). Very broadly, yields will soften when (1) traffic growth is flat or insufficient to absorb 
output growth (low prices are used to sustain load factors), (2) intense competition lower 
prices, and yields will harden when (1) load factors are already high and output is growing no 
faster than traffic, (2) traffic growth is outstripping growth in output and (3) lower 
competition keeps prices unchanged. The fact that traffic, load factor, and revenue (therefore 
yield) will each be affected by these type of adjustments illustrates how intimately connected 
the variables are – all within the context of available output (Talluri&Ryzin, 2001). 
 

1.1 Background 
This paper’s main emphasis is the airline industries load factors. The load factor measures the 
percentage of an airline´s output that has been sold – in effect, a measure of the extent to 
which supply and demand are balanced at prevailing price points. The achieved load factors 
for the industry conceal marked variations between different type of airline, with regional 
carriers at the lower end of the spectrum and charter airlines generally achieving higher load 
factors than scheduled carriers (Cross, 1997). The average load factor for any individual 
airline masks variations between different markets and cabins, with economy/coach 
achieving higher load factors because customers tend to book further in advance and expect 
lower levels of seat accessibility than is the case in premium cabins; it also conceals 
pronounced daily, weekly and – in particular – seasonal variations. For example, an monthly 
annual passenger load factor of, say, 75% will conceal full flights and spilled demand across 
much of the schedule, especially during peak days, but load factors perhaps as low as 50-60% 
on off-peak days departures. Load factors are driven to a considerable extent by the following 
factors. The first driver is the industry’s output decisions relative to demand growth. The 
output growth must be brought into closer alignment with demand growth. The second driver 
is pricing. Fare reductions generally stimulate demand and, depending upon what decisions 
are taken with respect to output, generate higher load factors. The third driver is traffic mix. 
Historically, the higher the proportion of business travellers carried by an airline, the lower 
the average seat factor. Due to the random element in demand for business travels (volatile) 
imply that demand spill will be encountered at a lower average load factor in business and 
first class cabins (McGill& van Ryzin, 1999). The fourth factor is payment policies. A carrier 
taking non-refundable payment at the time of reservation is likely to have relatively fewer no-
shows and a relatively higher seat factor than on selling a greater portion of tickets on a fully 
flexible basis. The fifth driver is commercial success. A success of product design, 
promotions, marketing communications, distributions, and service delivery will clearly 
influence current load factors. Finally, the sixth driver is revenue management. The 
effectiveness of a revenue management system in minimising spoilage will influence load 
factors. Revenue management system capabilities – specifically, the refinement of demand 
forecasting tools – will contribute significantly (Marriott &Cross, 2000). 
Depending on prevailing market conditions, it is often the case that load factor and yield trade 
off against each other: unless demand is particularly strong and output growth is under firm 
control, it is likely that rising yield will be associated with downward pressure on load 
factors. Conversely, falling yield tends to be associated with higher load factors. Hence, 
airline carriers will generally want to arrive at a capacity plan with target load factors that 
strike a balance between the costs of turning passengers away and the costs of meeting all 
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peak demand coming forward and oversupplying the market at other times. Hence, high load 
factors might sometimes be a “double-edged sword”. Both positive (lower cost per passenger 
mile) and negative (unacceptable levels of spill) effects are in operation. Moreover, it is much 
easier from an operational perspective to manage an airline when load factors are at 64% then 
when they are at 84% (Cross, et al, 2010). A moderate average load factor might be 
acceptable if the break-even load factor is sufficiently low – as when, for example, a high 
yield product is being offered. A high average load factor will not necessary be enough to 
ensure acceptable operating performance if the break-even load factor is high – as when, for 
example, unit cost is high or yield is low. If average load factor rises whilst yield and unit 
cost (and therefore the break-even load factor) remain constant, operating performance will 
improve (and vice versa).  
The load factor is therefore a measure of the success or otherwise of an airline´s capacity 
management efforts. These efforts are hindered by the fact that whilst demand fluctuates in 
units of single seat-departures in different origin and destination markets and is volatile, 
supply can only be produced in units equivalent to the capacity of whichever aircraft type is 
available to operate the flight-legs and routes designed to serve targeted origin and 
destination markets and is broadly fixed in the short run. Furthermore, the requirements to 
maintain both high flight completion rate and the integrity of network connections and 
aircraft and crew assignments might preclude a scheduled passenger carrier from cancelling a 
significant number of its lightly loaded flights (Bruckner, & Whalen, 2000). 
 

1.2 The Problem 
The main objective of this paper is therefore to provide an econometric model that can 
capture the variations of load factors of the flights of domestic and cross boarder flights of 
Europe of airlines under the AEA (Association European Airlines) across different 
geographical regions of the world. The fit of the econometric model will helpful to forecast 
the load factor of the flights of the airlines under the AEA. 
Our first problem is the identification of which econometric model is appropriate to study the 
load factor of the flights of domestic and cross boarder flights of Europe of airlines under the 
AEA. The most important stochastic quantitative analysis is regression analysis and time 
series analysis. Regression analysis is a type of multivariate analysis which applied to the 
cross-sectional (spatial) data to stochastically measure the impact of exogenous variables 
(predictors) on the endogenous variable (response variable). Time series analysis is helpful to 
see the dynamic aspect of the endogenous variable (Pearl, 2000; Granger, 1991). 
Time series analysis is incomplete to measure the spatial effect and regression analysis is 
incomplete to measure the dynamic effect of the endogenous variable. This showed that these 
two fundamental models are complementary. An econometric model which represents both 
the combination of regression and time series analysis is called panel data analysis. 
Therefore, in order to acquire the advantages of time series and regression analysis we 
employ panel data analysis to build an econometric model of the regional flights of load 
factor of the airlines under the AEA (Pearl, 2000; Sims, 1980).  
Panel data regression equation consists of the special effect and the time effect. Usually these 
effects can be fixed or random effect according to the test results of the Hausman 
specification. However, in this study of the Hausman specification test is not sufficient to 
have a concrete understanding of the effect of time of the load factor (Fitzmaurice, et al, 
2004).   
 
One of the major challenges in this econometric analysis of time effect on the load factor of 
the flights across the different regions is identifying the structure of the autocorrelation of the 
series (Vassilis, 2008). Typically we think the intensity of the autocorrelations of the time 
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series data is vanishing with lags.However, reality the exact autocorrelation structure of the 
load factor showing highly seasonal dependence. This makes the autocorrelation structure of 
the load factor is behaving in complicated manner. 
 
Therefore, in this study we advance the classical panel data analysis by expressing the time 
effect of the load factor is a dynamic (can be linear or nonlinear) function of parameters 
which are integrated to geographical flights (Domestic and Cross Boarder Europe). This 
helps us to control the periodic autocorrelation. Further in order to control the serial 
autocorrelation we apply the Prais–Winsten recursive autoregression estimation (Prais & 
Winsten, 1954). 
Finding the most suitable mathematical relationships of the dynamic time effect of the load 
factor and controlling serial correlation is therefore the indispensable task of this study.The 
best panel data model fit should therefore capture geographical markets, economy/premium 
cabins and – in particular - seasonal variations. Moreover, well-calibrated forecasts may bring 
superior new information and techniques to revenue management system capabilities. 
 

2. Review Literature 
In December 17, 1903, after four years research and design two scientists named Orville and 
Wilbur Wright created a flying machine today called air plane. Prior to 1903, people had 
flown only in gliders and balloons. Since the birth of flight in 1903, air travel has developed 
as an essential means of transportation for people and cargo around the world (Crouch, 2004). 
In the history, Leon Delagrange was the first person to fly as a passenger with French pilot 
Henri Farman from a grazing land outside of Paris in 1908. The first American aircraft 
passenger flew with Orville Wright at Kitty Hawk in 1909 was Charles Furnas. In January 1, 
1914, the first scheduled air service began in Florida, America by an aircraft designed by 
Glenn Curtiss (Gibbs, 2000). 
So many years following the innovation of the first aircraft have conveyed about a revolution 
in the way people travel. The airline business is a main industry, have faith in millions not 
only for transportation but also mobilize the research and developments (R&D) of many 
countries. In 1933, the American aircraft company Boeing produced the first modern 
passenger airliner called the Boeing 247. In the same year United Air Lines promptly bought 
60 of the Boeing 247. The Boeing 247 which accommodates for 10 passengers and flying at a 
speed of 155 miles per hour is also used for military purpose (Bowers, 1989). 
The Douglas Aircraft Company incorporated Boeing’s innovations and improved the Boeing 
247 and designed the DC-1. The DC-1 had a more powerful engine and accommodates two 
or more passengers than did the Boeing 247. Most prominently, the airframe was designed so 
that the casing of the aircraft windbag most of the stress on the plane during flight 
(Francillon&Douglas, 1979). 
In the 1950s major technological innovations of jet aircraft for commercial use was 
introduced in the global airline industry. In 1970s the technological innovations continued its 
growth and enabled by the introduction of the development of wide-body “jumbo jets”. 
During this time, airlines were seriously regulated throughout the world (Gradidge& Jennifer, 
2006). 
Since the mid of 1970s forwards the technological innovation on the aircraft is focused 
switched on the improvement of more efficient engine, avionics, lighter composite materials 
and wide-bodied medium-haul aircraft. During this time for example the Boeing 767 and the 
Airbus A-310 introduce to the aircraft market. At the same time, the tendency on the road to 
larger aircraft flying at the same speed continued. For instance is the Airbus A-320 
familiarized in 1988 which having up to 180 seats. During the 1990s the Boeing 767–200 
EQ, Airbus A340 and Boeing 777 were introduced in the aircraft market (Rigas, 2010).  
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Since the early days of the 21-century the technological developments of the aircraft industry 
are continued by improving engine (especially fuel consumption) and airframes (reduction of 
the weight of the aircraft). Both the developments critically contributed to reduction of the 
operating costs of the aircraft. In 2008 Boeing 787 Dreamliner introduced to service. The 
aircraft as much as 50 per cent of the main structure, comprising the fuselage and wings, is 
made of composite materials. In 2010 the Airbus A350 and entering service later, would also 
have a high composite component (Rigas, 2010). 
 

2.1 The Global airline industry 
The global airline industry is responsible for a service to effectively every country in the 
world, and has played anessential role in the establishment of a global economy. The airline 
industry by itself is a main economic power of many countries in many directions.For 
example, the aircraft manufacturing industry is a wide industry which is running through 
many peripheral industries that cause reduction of the unemployment rate and mobilize the 
research and developments. On the other hand economic integration of the many countries 
across the world is highly supported by the airline industry. Therefore, including the 
expansion of tourism and recreation, the role of air transportation is significant to facilitate 
the world economy (Belobaba, et al, 2009). 
According to Rigas(2010) the airline industry gives the impression of being both cyclical and 
strappingly subjective to external dynamics. This unsurprisingly means that growth rates can 
vary enthusiastically from time to time. On the other hand the fundamental trend has been 
one of consistently virtuous growth in demand but at a diminishing rate. Most industries 
challenged with sustainable and high growth of demand for their services or products would 
be spread out in huge profits. However, such marketing phenomena cannot suitable for the 
airline industry.  Scholars explained such situation as the international airline industry is 
complex, dynamic subject to rapid change and innovation, and marginally profitable. In line 
for the difficulty of efficient approximating real asset values for airlines with inconsistent 
depreciation, the rate of return on assets (ROA) cannot be fully applied easily to the airline 
industry. 
In the airline industry pricing refers to by considering various service facilities and capacities, 
for a set of airline products then procedure of determining tariff levels in an origin‐destination 
market. Revenue management is a consequent the process of determining the number of seats 
available at each tariff level. This shows the revenue management of the airline is a function 
of its tariff strategy and the load factor. According to Kellner (2000) the success of the airline 
is determined by its ability to make unit revenues (Yield.LF) higher than its unit costs (Total 
Cost/ ASK). Therefore, in addition to minimize the unit cost, the important task of the airline 
manager is to simultaneously maximize yield and load factor. Alternative evaluation of the 
profitability of airlines is the operating ratio. The operating ratio is a ratio that demonstrates 
the efficiency of an airline by matching operating expense to net sales (ICAO, 2013).  
 
2.1.1 The Main Features of the Global airline industry 
The main key features of the airline industry are summarized as follows. 
Service Industry: Airlines give transportation service for their customers and their properties 
(Cargo) from one location to another for an agreed price.  
Capital Intensive: Airlines essentially needed varieties of expensive and luxurious 
equipment and facilities. Consequently, the airline industry is a capital-intensive business, 
demanding big amounts of money to function successfully (Belobaba, et al, 2009). 
High Cash Flow: Because airlines possess large fleets of expensive aircraft that depreciate in 
value over time, they stereotypically produce a significant positive cash flow. Most airlines 
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use their cash flow (profits plus depreciation) to reimburse debt or purchase new aircraft 
(John, 2009).  
Labor Intensive: Anyairline needed employs of effective army of pilots, mechanics, flight 
attendants, baggage handlers, security personnel, reservation agents, gate agents, cooks, 
cleaners, managers, accountants, lawyers, etc. Therefore, the Airlines typically are labor 
intensive (Belobaba, et al, 2009). 
Airline Revenue:The major revenueof the airline industry comes from the transportation of 
passengers. The minor revenue of the airline is comethe transportation of cargo and the postal 
service (Chua, et al, 2005). 
Airline Costs: The major airline costs are (Flew, Terry 2008; Babikian, et al, 2002; Oum& 
Yu,1998; Borenstein, 1992): flying operations (costs of such as fuel and pilot salaries); 
maintenance (both parts and labor); the aircraft and traffic service (mostly the cost of 
handling and holding passengers, cargo and aircraft on the ground and including such things 
as the earnings of baggage dispatchers, handlers and airline gate agents; Sales and promotions 
(including travel agent commissions, reservations and advertising); the passenger service 
(mostly in-flight service and including such things as food and flight attendant salaries); 
transport related (delivery trucks and in-flight sales); administrative costs; depreciation and 
amortization (equipment and plants) and other different labor costs. 
Small Profit Margins: Airlines have gotten a net profit of small percentages (Mark & Brian 
2006).  
Seasonal: The airline business traditionally has been very seasonal (Ľubomír&Hospodka, 
2013). 
 
2.1.2 Deregulation and its Impact on the Airline Industry  
Prior to the 1978 the airline industry aspect is regulated by the government agency. US 
economists pointed out a number of studies which supports unregulated intrastate airfares 
were considerably lower than fares for interstate flights. As a result stress for airline 
deregulation had been increased for many years. Especially, a series of concrete econometric 
studies intensified the pressure of deregulation in the mid-1970s (Millbrooke, 2006). 
According to U.S. General Accounting Office, (1990), on October 24, 1978 President Jimmy 
Carter signed the Airline Deregulation Act of the airline industry which was approved by the 
American Congress. Deregulation of the airline industry beginning in the USA cause to the 
airline management cost efficiency and effectiveness; operating profitability and competitive 
behavior.Airline deregulation (liberalization) has now binged to most of the industrialized 
world, that continuing progression of exceedingly competitive world-wide airline industry 
(Bamber, et al, 2011)). 
Deregulation contributes to extensive development of hub-and-spoke networks. Hubs are 
strategically and advantageously positioned airports used as transfer points for passengers 
and cargo moving from one location to another. Airlines implemented hub-and-spoke 
systems enable to play a part of many market places of the same fleet size (Brueckner, 2004; 
Kahn, 1988).  
Deregulation allows the airline service by introducing new carriers. The entrance of new 
airlines resulted in extraordinary competition in the airline industry. Consequently, increased 
and intensified competition produced discount fares. Therefore, the discount fares are the 
most important result of airline deregulation (IATA, 2008); Poole, & Butler, 1998).  
In addition to the discount of fares, schedule is an important dimension of air travelers. Due 
to deregulation, airlines have been able to function and they can adjust their schedules often, 
in reaction to market prospects and competitive pressures. Deregulation also generated 
marketing novelties, the most remarkable existence of frequent flyer programs, which 
repayment of customers with free tickets and other benefits (Card, 1986).  
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A computer reservation system is also subsequent result due to deregulation. The computer 
reservation systems empower airlines and travel agents to efficiently and effectively process 
the many of the passengers who serve in a wide market area. Deregulation also help for the 
innovations in the development of code-sharing agreements of airlines. The Code-sharing 
agreements consent different airlines to compromise better coordinated and well harmonized 
services to their customers (Winston, 1995). 
 

2.2 Load Factor-Measure of airline performance 
Yield management is the assortment of schemes, strategies and tactics airlines use to 
systematically manage demand for their services and products. Airlines are the most 
prominent users of yield management systems and also the drivers of innovations. The yield 
management practice has developed from its roots in airlines to its prominence today as a 
typical business run through in a wide range of industry areas, including fashion retail, 
hospitality, energy, and manufacturing (Link, 2004).  
A bid price is the highest price that a passenger is agreeable to pay for the air transport 
service. So, this price is depending on the type of customer at a time. The bid price specifies a 
fitting together the dynamic network models and the optimal network solution. The 
performance of dynamic network models is its ability to control the optimal revenues in the 
market (Kaul, 2009). 
Passenger load factor (or every so often simply called load factor) is a measure of the degree 
of an airline passenger carrying capacity. In other words, load factor is a measure of 
efficiency and the performance of an airline. Success of high load is supposed indispensable 
for airline’s profitability.International airline literature can be divided into demand structures, 
fleet, network and revenue modelling, market structures and operating performance (Dender, 
2007). As illustrated in the introduction, the paper’s main objectives are operating 
performance focusing on the unit revenue defined as. The load factor is therefore a measure 
of the extent to which supply and demand are balanced at prevailing price points (Distexhe, 
&Perelman, 1994). 
The percentage of the seats the airline has in service that it must sell at a given yield (or price 
level) to cover its costs is called break-even load factor. In order to avoid the risks of negative 
profit, every single airline has a break-even load factor. The cost of the airline is positively 
and the price of the airline is negatively correlated with the break-even load factor 
(Flores&Moner, 2007). 
The magnitude of the load factor of the given airline directly reflects the competency of that 
airline. Therefore, it is thought-provoking to examine factors that are potentially affecting the 
load factor of the airline. Generally, operational factors play significant title role in affecting 
the load factor of airlines. Specifically, the capacity of the airline, the distance covered by the 
journey of the airline, tourist, codeshare agreement (is an aviation business arrangement 
where two or more airlines share the same flight) and market concentration HHI index (a 
commonly accepted measure of market concentration) are the most important factors that 
have a positive and significant effect on load factor (Minho, et al, 2007). 
The GINI index (a measure the degree of price dispersion, or price inequality in the airline of 
the same flight) and is discovered as the factor that negatively affects the load factor of the 
airline. Other important factors that affect the load factor are airport features, performance 
limitation, flight conditions, seasonally of demand, time of traveller schedule, frequency of 
flight and dynamic route networks (Minho, et al, 2007; Karagiannis& Kovacevic,2000). 
Knowing and identifying these potential factors would benefit the airline to make more 
effective strategic and tactical decisions. These effective strategic and tactical decisions 
include: staff training, changing the mind-set among airline staff, determining the optimal 
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number of travel agencies and advertisement, changing the airline management practices, 
optimizing the human resource, and many other related activities (Talluri& Ryzin, 2004). 
 

2.3 Association European Airlines 
In 1952, Air France, Royal Dutch Airlines, Sabena and Swissair established a cooperative 
study group of airline.Immediate of the establishment of the group the British Airways and 
Scandinavian Airlines joined the group.The joint group of these airlines were responsible for 
the establishment of the European Airlines Research Bureau (ARB) in 1954 on a permanent 
basis, in Brussels. In the same year, after the establishment of the ARB, the European Civil 
Aviation Conference (ECAC) founded in the Strasbourg Conference on the harmonization of 
air transport in Europe (AEA 2014b, 2013).  
The European Civil Aviation Conference (ECAC) inspires air carriers to carry out 
cooperative and supportive studies designed to promote a methodical development and 
expansion of air transport in Europe. In process in 1973, the name of the European Airlines 
Research Bureau changed to the Association European Airlines (AEA, 2013). 
The Association of European Airlines (AEA) is a non-profit organisation which works 
together with the organizations of the European Union (EU) and other interested parties in the 
air transport value chain to safeguard the sustainable development of the European airline 
industry in a world-wide marketplace (AEA, 2013). 
The Association of European Airlines (AEA) has wide-ranging knowledge and experience of 
the airline industry. The AEA is a trustworthy contributor to achieve the following key 
objectives: raise aviation’s role in Europe’s future; increase the benefit of customers; 
contribute to better cost-effective regulation; speed up aviation progress towards a single 
European Sky; decarbonise aviation to protect global environment; safeguard circumstances 
for fair competition of airlines; and titleholder a global security framework of airlines (AEA, 
2013). 
According to AEA (2014a) today the Association of European Airlines (AEA) bringing 
together more than 30 major European airlines listed as: Adria Airways (Slovenia), Aegean 
Airlines (Greece), Air Baltic (Latvia), Air Berlin (Germany), Air France (France), Air Malta 
(Malta), Air Serbia (Serbia), Alitalia (Italy), Austrian Airlines (Austria), British Airways 
(United Kingdom), Belgium Brussels Airlines (Belgium), Cargolux (Luxembourg), Croatia-
Airlines (Croatia), Cyprus Airways (Cyprus), Deutsche Lufthansa (Germany), DHL 
(Germany),  Finnair (Finland), Iberia Airlines (Spain),  Icelandair (Iceland), KLM (The 
Netherlands),  LOT Polish Airlines (Poland), Luxair (Luxembourg), Meridiana (Italy), 
Scandinavian Airlines System (Sweden, Norway, Denmark), Swiss (Switzerland),  TAP 
Portugal (Portugal), Tarom (Romania), TNT Airways (Belgium),  Turkish Airlines (Turkey ), 
and Ukraine International Airlines (Ukraine). 
Here after when we say airlines, we mean that airlines that are members of the AEA until the 
end of Dec 2013. 
 

3. The Data and Methodology  
3.1 The Data  

The dataset is from Association of European Airlines(www.aea.be )and is downloaded from 
Research & Statistics(http://www.aea.be/research/traffic/index.html) and AEA Traffic and 
Capacity Data (AEA, 2014c). The data contains information about Available Seat-Kilometres 
(ASK), Revenue Passenger-Kilometres (RPK) and Load factor (LF). The data is organised 
suitable for the objectives set by the panel data model (see next section). 
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3.1.1 Spatial Effects- The Geographical Codes 
DO – Domestic Flights of Europe 
Domestic traffic is defined as traffic carried on routes originating and terminating within the 
boundaries of a State by an air carrier whose principal place of business is in that State, or on 
routes between the State and territories belonging to it. Note that traffic on domestic stages of 
international routes is included in the international route group which corresponds to the 
flight routing in its entirety. 
EU - Cross-border flights of Europe 
Includes all cross border/ international routes originating and terminating within Europe 
(including Turkey and Russia up to 55ºE), Azores, Canary Islands, Madeira and Cyprus. 
 

3.2 Methodology 
3.2.1 One way Analysis of variance (ANOVA) 
One way analysis of variance (ANOVA) is used to see the existences of the mean differences 
of a certain random variables with a single treatment over its levels. The linear statistical 
model for ANOVA is given as (Cochran, et al, 1992):  

,         (1) 
where:  the grand mean, i the thi  level effect ),0(~ 2 Nij  

The method of estimation for the model parameters is using bootstrapping method.  
  
3.2.2 Signal processing 
Signal processing is a stochastic process of time series data that formulated as the series of 
harmonic functions (Hamilton, 1994). Alternatively, we can say signal processing is the 
spectrum of a time-series or signal is a positive real valued function of a frequency variable 
associated with a stationary stochastic process. Specifically, the spectrum decomposes the 
component of a stochastic process into different frequencies present in that process, and helps 
identify periodicities. The signal processing stochastic model for a discrete variable is given 
as (Priestley, 1991): 

      (2) 

where: the mean of the series at a time t.  

are the Fourier transformation coefficients of cosine and sine waves  the function. 

Mean and Variance of the spectrum of the time series data:  

(3) 

 

 

                                                               (4) 

For simplicity of computation, we assume time as continuous variable (Kammler & David, 
2000). Further, we assume that the spectrum extends infinitely )),(( T in time in both 
directions. Then covariance of the series is given as:  
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(5) 
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where: ,....3,2,1,0 is the order of the lag 
In order to find the variance we set the 0  on equation 5 so that we have:  
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                                                   (6) 
 
3.2.2.1 Estimation of Spectrum density 
Non-Parametric- Computer Generated Graphical Method 
Spectral density analysis allows us to see the nature of autocorrelation function on the 
observed time series data in to Fourier space (Boashash, 2003). This creates a good ground to 
analyse the scope and the nature of autocorrelation structure of the observed time series data. 
This will help us to choose appropriate econometric model which can eliminate the problem 
of autocorrelation. 
The non-parametric estimation approach of spectral density is transformation of the 
autocorrelation function of the series in to Fourier series. This will allow us to see the nature 
of autocorrelation on the series on the Fourier space. The Fourier transformation contains the 
sum of infinite series of sine and cosine waves of different amplitude. So we plot the density 
and periodogram over the frequency of the series (Engelberg, 2008).  
Parametric Method: The Ljung–Box test 
There are a number of parametric methods that detect autocorrelation. However, the Ljung–
Box test is preferable for this case because it simultaneously detect the existence and the 
order of autocorrelation on the time series. Ljung–Box test procedure is given as (Davidson, 
2000): 
Null Hypothesis H0: The time series data are independently distributed. 
Alternative Hypothesis Ha: The time series data are dependently distributed with 
autocorrelation structure of order h. 
The test statistic of Ljung–Box is given as:  

(7) 

wheren is the sample size, is the sample autocorrelation at lag l, and h is the number of 

lags being tested. The null hypothesis is rejected for α level of significance if: 

                                                                          (8) 

 
3.2.3 Panel Data Regression Models  
Panel data (also called longitudinal data) is a data that is observed across different cross-
sectional (spatial) units over repeated time intervals. Therefore, such data contains 
information of both spatial effect and time effect of the response variable.  Contrasting to 
cross-sectional data, with longitudinal data we observe subjects over time. Contrasting time 
series data, with longitudinal data we observe many subjects (Davidson, et al, 1993). This 
will allow the data to have a broad cross-section of subjects over time allows us to study 
dynamic, as well as cross-sectional, aspects of a problem. Statistical analysis on panel data is 
called panel data regression analysis (Hsiao, 2003).  
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3.2.3.1 Two-way Fixed Effect Panel data regression model 
This model is applied when there is significant effect of both the special and the time effect 
on the response. The Two-way Fixed Effect panel data regression model is given as (Baltagi, 
2008):  

itkitklitlitittiit xxxxy   ......2211                               (9) 
,,...,3,2,1 ni  ,,...,3,2,1 Tt  kl ,...,3,2,1  

Where: ity is the response from cross section i at a time t, i  is theithspecific spatial effect t  

is the tth specific time effect, litx  are exogenous imputes of coefficients l are the model 

parameters and ),0(~ 2
nTit Iiid  is the random error term of the model 

Estimation: Under the complete fulfilment of the Gauss-Markov assumption the estimates 
from the Least Squares Dummy Variable (LSDV) estimation are the best linear unbiased 
estimator (BLUE) of the model parameters (Barreto, et al, 2005).  
 
3.2.3.2 Two-way Random Effect Panel data regression model 
This model is applied when there is significant effect of both the special and the time effect 
on the response. The Two-way random effect panel data regression model is given as (Davies 
& Lahiri,1995):  

itkitkititittiit xxxxy   ...332211                              (10) 
,,...,3,2,1 ni  ,,...,3,2,1 Tt  kl ,...,3,2,1  

Where: ity is the response from cross section i at a time t, )],[(~ 2
 ii Eiid  is theithspecific 

spatial effect t )],[(~ 2
 tt Eiid is the tth specific time effect, litx  are exogenous imputes of 

coefficients l are the model parameters and ),0(~ 2
nTit Iiid  is the random error term of 

the model. 
Estimation: Under the complete fulfilment of the Gauss-Markov-Aitkin assumption the 
estimates from the Generalized Least Squares (GLS) estimation are the best linear unbiased 
estimator (BLUE) of the model parameters (Amemiya& Takeshi,1985).  
 
3.2.3.3 Dynamic Time effect two-way Panel data regression model  
This model is applied when spatial is significant and the time effect is dynamic. The dynamic 
panel data regression model is given as (Davies & Lahiri, (2000); Hayashi, Fumio (2000); 
Luc  et al, 2000; Schittkowski, K., 2002; Fahrmeir, et al, 2009; Chan, et al, 2012; Maria & 
Jim 2014): 

itkitkititittiit xxxxy   ...332211                                                      (11) 
);( it tf    

itihiihtttitiit vU   ),...,,;,...,( 21,2,1,  , ),0(~ 2
vit iiDNv   

,,...,3,2,1 ni  ,,...,3,2,1 Tt  kl ,...,3,2,1  

Where: ity is the response from cross section i at a time t, i  is theithspecific spatial effect t  

is the tth specific time effect, litx  are exogenous imputes of coefficients l . )(f is any real 

valued function of time “t” and a vector of parameter  )(U is a linear function of jti , , ij
, 

hj ,...,3,2,1  and )],,...,,(),...,,...,,(),,...,,[( 212222111211 nmnbmm    

Estimation: Case 1: 
If );( it tf   is a linear function then under the complete fulfilment of the Gauss-Markov 

assumption the estimates from the Least Squares Dummy Variable (LSDV) estimation are the 
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best linear unbiased estimator (BLUE) of the model parameters. Otherwise, under the 
complete fulfilment of the Gauss-Markov-Aitkin assumption the estimates from the 
Generalized Least Squares (GLS) estimation are the best linear unbiased estimator (BLUE) of 
the model parameters (Voinov&.Nikulin (1993); Babaket al, (1999); Thomas, et al (2000);  
Hsiao (2003)).  
Estimation: Case 2:  
If );( it tf   is a nonlinear function,then we apply the following estimation procedure to 

estimate the model parameters (Seber, et al, 1989; Meade & Islam, 1995; Kelley, 1999; 
Billings, 2013; Wooldridge, 2013).  
Let itit XtFy   );,(                                                                                                     (12) 
where 

,...);();,( 332211 kitkitititii xxxxtfXtF    
],,[],...,,,[ )1(321  ikmn   is the vector of model parameters 

Now let’s minimize the total sum of the errors as: 
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In order to solve equation 7 we apply the Newton-Raphson recursive algorithm by defining a 
new function as: 
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 Now lets drive the Jacobean matrix (Hazewinkel, 2001)from equation 8 as:  
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Then by inverting the Jacobian matrix (i.e. 1
GJ ) the Newton-Raphson recursive algorithm to 

get the numerical solution as the estimates of the model parameters is given as (Ortega  & 
Rheinboldt, 2000; Bonnans, et al, 2006):  

....3,2,1],][[]ˆ[]ˆ[ 1
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                                                                (16) 

 



European Transport \ Trasporti Europei (2015) Issue 57, Paper n° 8, ISSN 1825-3997 
 

3.2.4 Advanced Model Adequacy Checking  
In this section after controlling the periodic autocorrelation by selling the time effect as a 
function of time, we need to remove the serial correlation. This makes to obtain efficient 
model parameters. The following steps, therefore, in order to remove serial correlation we use 
the following algorithm.  
Step 1: First estimate the model fit residuals as (Weisberg,1985; Cook, et al, 1982): 

)ˆ,;(ˆ  XtFyitit                           (17) 

Step 2: Determine the structure of autocorrelation 
At this step we use the Brewish-Godfrey test of autocorrelation (Godfrey, 1978). The test 
procedure is given as:  
Step 2.1: Set Hypothesis 
            Null-Hypothesis (H0): The error terms are independently distributed 
            Alternative Hypothesis (H1): The error terms are serially correlated of order h 
Step 2.2: Regress the residual as: 

ithtihititiiit vXH   );(ˆ....ˆˆˆ ,,2,21,1 
(18) 

where: )(H  is a linear function of exogenous imputes that are significant to fit our original 

panel data model )ˆ,;( XtF and a vector of parameter ],,[],...,,,[ )1(321  ikmn   .  

Step 2.3: Calculate the coefficient of determination of regression equation 11 
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(19) 
where:  ̂SSE is the sum of squares of the error and ̂SST  is the total sum of squares.  

Step 2.4: Calculate the Brewish-Godfrey test statistic 
22

ˆ ~ hnRBL  (20) 
Step 2.5: Decision: Reject H0 if 

2
,

2
ˆ  hnRBL 

                              (21) 
Step 3: If we do not reject our null-hypothesis we take the model fit is free from the problem 
of autocorrelation. Otherwise, if we reject our null-hypothesis we apply the Prais–Winsten 
transformation as (Davies &Lahiri, 1995; Verbeek, 2004; Frees, 2004; Amemiya,1985; Prais 
& Winsten,1954; Wooldridge, 2008; Wooldridge, 2013):   
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Step 5: Apply the principle of from equation 8 of equation 11 
Step 6: Repeat from Step 1 to Step 5 unless the Brewish-Godfrey test of autocorrelation 
confirms that there is no serial correlation on the random error terms.  
 

4. Results and Discussions 
4.1 Assessment of the regional characteristics of Load Factor  

Before we fit the panel data model it is essential to analyse the relationship of the load factor 
of the flights of both the domestic and cross country of Europeof the airlines with respect of 
the available seat-kilometres (ASK) and revenue passenger-kilometres (RPK).  
The bootstrap estimates of the results of the revenue passenger-kilometres (RPK) and 
available seat-kilometres (ASK) of the domestic and cross border flights of Europe are given 
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in Table 1. From the Table we observe that the estimates of the mean revenue passenger-
kilometres (RPK in million) of the domestic and cross border of Europe are 3,936.89 and 
11,632.11 respectively. Furthermore, the estimates of the mean available seat-kilometres 
(ASK in million) of the domestic and cross country of Europe are 5,895.59and 
17,519.27respectively. The result confirmed that both in revenue passenger-kilometres (RPK) 
and available seat-kilometres (ASK) the cross boarder flights are higher than the domestic 
ones.   
Conferring to the result from Table 2, the average cross border flights have 7,695.222revenue 
passenger-kilometres (RPK in million) and 11,623.677available seat-kilometres (ASK in 
million) than the domestic flights. However, the result from Table 2, confirmed that the load 
factor of the domestic flights is 1.85 % higher than the cross boarder flights.  
Observation of Figure 1 and Figure 2 showed that there exist significant positive linear 
relationships between the revenue passenger-kilometres and available seat-kilometresfor both 
domestic and cross border flights. This is showing that, generally these airlines have a good 
coordination to balance the demand and their air transport supply. Nevertheless, in order to 
have a deep insight about the managerial performance of these airlines we have to analyse the 
results from Figure 3 and Figure 4. 
From Figure 3we observe that there is a no important (since the coefficient of determination 
is only 16.2%) linear relationship between load factor and revenue passenger-kilometres in 
the domestic flights of Europe. However, there exists a significant positive linear correlation 
between load factor andrevenue passenger-kilometres of the cross boarder flights Europe. In 
addition the linear relationship of load factor and revenue passenger-kilometres of the cross 
border flights with coefficient of determination of 80.7% is given as: 

)(00166.047.45 millioninRPKLF   
This result confirmed that these airlines have a better demand management for the cross 
border flights than the domestic flights.  
From Figure 4we observe that there is a no important (since the coefficient of determination 
is only 2.1%) linear relationship between load factor and available seat-kilometres in the 
domestic flights of Europe. However, there exist a significant positive linear correlation 
between load factor andAvailable Seat-Kilometres (ASK) of the cross boarder flights Europe. 
In addition the linear relationship of load factor and available seat-kilometres of the cross 
border flights with coefficient of determination of 66.4% is given as: 

)(00135.011.41 millioninASKLF   
This result confirmed that these airlines have a better capacity management for the cross 
border flights than the domestic flights.  
 

4.2 Assessment of the structure of Autocorrelation of Load Factor 
In time series econometric analysis it is always a challenge to get the exact autocorrelation 
structure of the series. One of the powerful methods of identifying the structure of 
autocorrelation function is the spectral density analysis. The non-parametric spectral density 
and analysis gives us graphical information about how the autocorrelation function behaves 
in the Fourier space.  
One of the graphical methods is the response of periodogram of the autocorrelation function 
of the frequency of the time series observation. This method is extremely sensitive the 
optimal autocorrelation structure of the series. The other method is the response of density of 
the autocorrelation function of the frequency of the time series observation. This method is 
sensitive to the weighted autocorrelation structure of the series. Therefore, both plots have 
important information about the structure autocorrelation of load factor.  
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The result of the spectral density estimation and the Ljung–Box test of the load factor of the 
domestic and cross border Europe flights of the airlines under AEA is given in Table 3. The 
interpretation of Table 3 is given as follows: 
Autocorrelation structure of load factor of the Domestic Flights of Europe 
The non-parametric plot of the periodogram and spectral density of the load factor of the 
domestic flights of Europe suggest that there exists strong periodic autocorrelation which is 
observed after jumping a certain period of months. The repeated yearly plot of load factor of 
the domestic flights of Europe over months showed that there are strong periodic pattern with 
small variance from year to year.  
In the repeated yearly plot of load factor over months, we observe that there is one important 
pattern. The smallest load factor is observed in January then it started grow until July then 
declining until December.  
The plot of the periodogram and spectral density suggest that the load factor distribution of 
flight is strongly serially correlated up to a certain month lags. Furthermore, the parametric 
test of the Ljung-Box test suggests that there exist significant serial correlation of order 17 
months and dissipated after 18th month.  
Autocorrelation structure of load factor of the Flights of Cross-border Europe 
The non-parametric plot of the periodogram and spectral density of the load factor of flights 
of cross border Europe suggest that there exists strong periodic autocorrelation which is 
observed after jumping a certain period of months. The repeated yearly plot of load factor of 
the flights of Cross-border Europe over months showed that there is strong periodic pattern.  
In the repeated yearly plot of load factor over months, we observe that there is one important 
pattern. The smallest load factor is observed in November, December and January then 
started to grow until July, August and September then declining until November.  
The plot of the periodogram and spectral density suggest that the load factor distribution of 
flight is strongly serially correlated up to a certain month lags. Furthermore, the parametric 
test of the Ljung-Box test suggests that there exist significant serial correlation of order 15 
months and dissipated after 16thmonth. 
 

4.3. Fitting the Dynamic Time Effect Panel Data Regression Model 
The analysis of section 4.1 we identified that both in revenue passenger kilometre and 
available seat kilometre the cross border flights are higher than the domestic flights of 
Europe. Besides the average load factor of the domestic flights is higher that the cross border 
of Europe. This confirms that inclusion of spatial effects to the fit of the panel data model 
controls such important variability.  
The analysis of section 4.1 we identified that the characteristics of load factor behave 
differently for the flights of the domestic and cross border Europe.The load factor is 
significantly correlated with both the revenue passenger kilometre and available seat 
kilometre for the cross boarder flights of Europe. However, there is no important linear 
correlation with both the revenue passenger kilometre and available seat kilometre for 
domestic flights of Europe. Therefore, using these variables (both RPK and ASK) as a 
common exogenous impute to predict the load factor becomes inappropriate.  
The analysis on the structure of autocorrelation in section 4.2, we identified that both periodic 
and serial correlations exist on the load factor. The structure of autocorrelation is different for 
both domestic and cross border flights of Europe. This is showing that the time effect on the 
load is not simply fixed or random effect; rather it is dynamic and uniquely associated with 
the regional flights.  
Therefore, the appropriate model that we will fit to analyse the load factor of the flights of 
airlines is the dynamic time effect two way panel data regression model.The fit of the 
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dynamic time effect two way panel data regression model of the load factor of the domestic 
and cross border flights is given in Table 4.  
The significance of the time function harmonic component suggests that the load factor is 
seasonal by its nature.Generally, the fit of the model suggests that the load factor is 
improving (growing) with time for both domestic and cross border flights. Specifically, the 
spatial effect of the load factor of the domestic flights(70.01%) is greater than the spatial 
effect of cross border flights(60.65 %). However, the significance of the cubed polynomial 
showed that, in the long run the load factor of the cross border flights will exceed the 
domestic flights. 
In Figure 5 (left side) we see that the comparison of the actual and the predicted values of the 
load factor. From the Figure we determine that the fit of the dynamic time effect two way 
panel data regression modelis found to be robust and realistic to forecast the load factor of the 
domestic and cross border flights of Europe. Furthermore, in Figure 5 (right side) we give the 
plots of the monthly forecasted valuesof the load factor with upper and lower 95% prediction 
intervals for 2014. 
 

5. Conclusions and Recommendations 
5.1 Conclusions 

This study applied advanced econometric analysis on the load factor of flights of domestic 
and cross boarder Europe of airlines that are a member of the AEA. The econometric analysis 
can help us to conclude the following points.  
The mean revenue passenger-kilometres of the domestic and cross border of Europe are 
3,936.89 and 11,632.11 respectively. Likewise, the mean available seat-kilometres of the 
domestic and cross country of Europe are 5,895.59 and 17,519.27 respectively. Therefore, 
both in revenue passenger-kilometres and available seat-kilometres the cross boarder flights 
are higher than the domestic ones. However, the average load factor of the domestic flights is 
1.85 % higher than the cross boarder flights. The primary reason for the domestic flights have 
higher load factor that the cross boarder flights of Europe is due to the domestic flights have 
by far lower available seat kilometres than the cross border flights. 
The load factor for cross border flights of Europe is significantly and positively correlated 
with both the revenue passenger-kilometres and available seat-kilometres. While correlation 
of the load factor of the domestic flights of Europe with both the revenue passenger-
kilometres and available seat-kilometres is insignificant. This showed the airlines have a 
better demand and capacity management in the cross border flights than the domestic flights.  
The load factors of both domestic and cross boarder flights have periodic (season to season) 
correlations. The smallest load factor of the domestic flights is observed in January then it 
started grow until July then declining until December. The smallest load factor of cross 
boarder flights is observed in November, December and January then started to grow until 
July, August and September then declining until November. Furthermore, the load factors of 
both domestic and cross boarder flights have serial (month to month) correlations. The load 
factors of domestic and cross border flights have order of 17 and 15 months respectively. 
This showed that the load factor of domestic flights is more stable than the cross boarder 
flights. 
The overall autocorrelation structure pointed us the appropriate and realistic forecasting 
model to the load factor of the domestic and cross border flights is the dynamic time effect 
two way panel data regression model. The fit of the dynamic time effect two way panel data 
regression model showed that in the long run, the load factor of the cross border flights will 
exceed the domestic flights. By using the fitted model the paper contributed the monthly 
forecasted values of the load factor with upper and lower 95% prediction intervals for 2014. 
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5.2 Recommendations and Policy Implications 
This paper has applied profound Econometric analysis of the load factor of flights of 
domestic and cross boarder of Europe of the airlines that are members of the Association 
European Airlines (AEA). These domino effects of the study have important managerial 
implications. The econometric analyses help us to give the following recommendations.  
Firstly, the fit of the load factor using the dynamic time effect panel data model is found more 
robust and realistic. Therefore, the Association European Airlines (AEA) use (inform to use 
its airlines) the model for prediction of the load factor of distribution of the domestic and 
cross boarder of flights Europe. In this regard it is recommended that the association applies 
the model to regional flights of its airlines across the globe to have a more precise forecasting 
tool of the load factor. 
Secondly, in the airline industry, in addition to decreasing the airlines cost the profitability of 
the given airline is dependent on the joint maximization of yield and load factor. In this 
aspect, in order to push up the load factor and the yield simultaneously, and to produce 
strategic decisions about the profitability of these airlines, the Association European Airlines 
(AEA) is recommended to do further analysis of the load factor by considering individual 
airlines (spatial effects) into the dynamic time effect panel data model. The outcome of such 
analysis will give rigours information about the load factor of each the airline. Consequently, 
the AEA will have quantitative input for its airlines how to restructure the yield management, 
network design, etc. of the airlines with respect of their specific flights over the time periods. 
Thirdly, our econometric analysis identified that the reaction of the airlines to adopt the 
demand is found generally good for both domestic and cross border flights. However, when 
we deeply investigate the performance it is found that the demand and capacity management 
of these airlines is better in the cross border flights than the domestic flights. Furthermore, we 
identified that the load factor of the cross border flights of the airlines growing more rapidly 
than the domestic flights. Therefore, it is recommended that the Association European 
Airlines (AEA) will identify the airlines showed weak performance of the demand and 
capacity management in the domestic flights to improve their status.  
Fourth, as many scholars mentioned the airline industry is seasonal. This means the revenue 
generated from transporting passengers and cargo is dependent on the time periods. In this 
paper we found that the load factor of the flights of domestic and cross border Europe is 
seasonal. This implied that stabilizing the load factor is still not achieved by the airlines. 
Therefore, it is recommended that the AEA (advise to use its airlines) continuously works 
with how to improve the load factor of the airlines. 
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Table 1: Estimates of the Revenue Passenger Kilometre (RPK in million) and Available Seat Kilometre (ASK in million) over geographical code 

 Geographical 
Code 
  

 Estimates of Revenue Passenger Kilometre (RPK in million)  Estimates of Available Seat Kilometre (ASK in million) 

Statistic 
 

Estimates 
 Bias 

Std. 
Error 

95% Confidence Interval   
Statistic 

 

  
Estimates 

 Bias Std. Error 

95% Confidence Interval 

Lower Upper Lower Upper 

Domestic 
Flights 
  
  

Mean 3,936.89 3.02 54.35 3,838.41 4,050.08 Mean 5,895.59 -0.852 75.68 5,739.66 6,040.57 
Std. Dev 

881.50 -3.29 28.16 821.84 935.21 Std. Dev 1,224.98 -1.73 37.212 1,150.33 1,299.46 

Std. Error 
54.25     Std. Error  75.39         

Cross Border 
Flights 
  
  

Mean 11,632.11 -3.13 258.35 11112.27 1,2125.85 Mean 17,519.27 14.07 272.6 17,015.25 18,091.02 
Std. Dev 

4,144.79 -9.89 148.87 3,849.33 4,407.68 Std. Dev 4,549.63 -19.7 147.71 4,235.96 4,832.41 

Std. Error 249.49 Std. Error  273.86         
Estimation 
Method 

 
Bootstrap results are based on 1000 bootstrap samples 

 
 
Table 2: Comparison of Available Seat Kilometre (ASK in million), Revenue Passenger Kilometre (RPK in million) and Load factor (in %)of  
Cross Border and Domestic flights 

Variables 
  

Comparison of flights 
  

Mean 
Difference 

 

Std. Error 
Difference 

 
t‐cal 
 

Sig. (2-tailed) 
 
 

95% Confidence Interval  

Lower  Upper 

ASK (in million)  Cross Border  Vs. Domestic Flights   11,623.677  289.5660  40.1417  0.0000  11054.8585  12192.4955 

RPK (in million)  Cross Border  Vs. Domestic Flights  7,695.222  260.5634  29.53301  0.0000  7183.3754  8207.0681 

LF (in million)  Domestic Vs. Cross Border Flights   1.85408 .53419 3.470859  0.0010 0.80054 2.85387 

Estimation Method 
 
Bootstrap results are based on 1000 bootstrap samples 
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Figure 1: Time Series Plot of Available  Seat Kilometre (ASK in  
million) and Revenue Passenger Kilometre (RPK in million) 
               of domestic flights of Europe 

Figure 2: Time Series Plot of Available Seat Kilometre (ASK in  
million) and Revenue Passenger Kilometre (RPK in million)  
of flights of cross boarder Europe
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Figure 3: Scatter Plot of Load Factor (in %) versus Revenue passenger    
               Kilometre(RPK in million)  

Figure 4: Scatter Plot of Load Factor (in %) versus Available  Seat  
Kilometre (ASK in million) 
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Table 3: The structure of autocorrelation of load factor of domestic and cross boarder Europe flights of airlines under the AEA 
Regions  Monthly distributions of load factor 

across regions over time 
Autocorrelation structure of load 
factor using Periodogram 

Autocorrelation structure of load 
factor using Density  

Ljung-Box Q
Chi-Sq DF Sig. 

 
Domestic 
Flights of 
Europe 

 

   

44.343 17 .000 

 
 
Cross 
Border 
Flights of 
Europe 

 
 

 

315.90 15 0.000 

Key 
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Table 3: The fits of dynamic time effect two way panel data regression model of load factor of domestic and cross border flights of Europe 

Parameter Estimates 
  
 

Spatially 
integrated 
Dynamic Time 
Effects 

  
  
Estimates 

  
  
Std Error 

  
  
t‐cal 

 
  
Approx 
Sig. 

  
Model 
S.E 

  
  
 Month 

Forecasting of Load factor of 2014 (in %) 

  
Expected 

95% Prediction Interval 

LB  UP 

Rho (AR1)     0.52596  0.05414  9.71445  0.00000 

1.66973
  
  
  
  
  
  
  
  
  
  

Jan  62.97555  59.69048  66.26063 

Time function Coefficients 
  
  
  
  
  
  
  
  

t   0.02989  0.00567  5.27210  0.00000  Feb  65.15267  61.86760  68.43775 

)ln(t   ‐1.58953  0.43320  ‐3.66923  0.00030  Mar  67.42164  64.13657  70.70672 

)( 2tSin    ‐0.64336  0.12880  ‐4.99499  0.00000  Apr  70.08880  66.80373  73.37388 

)( 3tSin    ‐0.37554  0.16806  ‐2.23457  0.02632  May  69.96331  66.67823  73.24838 

)( 6tSin    ‐2.55438  0.24096  ‐10.60100  0.00000  Jun  72.24851  68.96343  75.53358 

)( 1tCos    0.40723  0.06744  6.03816  0.00000  Jul  73.20196  69.91688  76.48703 

)( 2tCos    0.31712  0.12874  2.46328  0.01443  Aug  73.95869  70.67361  77.24376 

)( 3tCos    ‐0.62849  0.16762  ‐3.74943  0.00022  Sep  71.38772  68.10265  74.67280 

)( 6tCos    ‐3.60355  0.23957  ‐15.04190  0.00000  Oct  70.41949  67.13442  73.70457 

Spatial Effect of  Domestic 
Flights of Europe 

   70.01087  1.39757  50.09470  0.00000  Nov  67.70716  64.42209  70.99224 

Dec  67.70716  62.53499  69.10514 
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Table 3 Continued 

Parameter Estimates 
  
 

Spatially 
integrated 
Dynamic Time 
Effects 

  
  
Estimates 

  
  
Std Error 

  
  
t‐cal 

  
Approx 
Sig. 

  
Model 
S.E 

  
  
 Month 

Forecasting of Load factor of 2014 (in %) 

  
Expected 

95% Prediction Interval 

LB  UP 

Rho (AR1)     0.60266  0.04880  12.34929  0.00000 

2.08231
  
  
  
  
  
  
  
  
  

Jan   67.61567  63.51956  71.71177 

Time function 
Coefficients 
  
  
  
  
  
  
  

)( 2tSin    ‐0.43466  0.15197  ‐2.86013  0.00457  Feb  71.36272  67.26662  75.45883 

)( 3tSin    ‐0.49577  0.20354  ‐2.43576  0.01552  Mar  75.60042  71.50431  79.69653 

)( 6tSin    ‐4.13576  0.31410  ‐13.16700  0.00000  Apr  79.40927  75.31316  83.50537 

)( 1tCos    0.34008  0.07832  4.34234  0.00002  May  79.89951  75.80341  83.99562 

)( 2tCos    0.32398  0.15198  2.13179  0.03394  Jun  82.32718  78.23108  86.42329 

)( 3tCos    ‐2.02934  0.20314  ‐9.99008  0.00000  Jul  84.41854  80.32244  88.51465 

)( 6tCos    ‐6.17512  0.31229  ‐19.77356  0.00000  Aug  86.45922  82.36311  90.55533 

3t  
71081.7 x   81016.5 x   15.14532  0.00000  Sep  84.12061  80.02450  88.21671 

Spatial Effect of  Cross 
boarder flights of Europe 

   60.65079  0.41780  145.16631  0.00000  Oct  80.87545  76.77935  84.97156 

Where: t 12 (Current year-1991)+Current month and  ....3,2,1,  i
ii

 are the periods 
Nov  75.34288  71.24677  79.43898 

Dec  71.76682  67.67071  75.86293 
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Figure 5: The comparison of fit of dynamic time effect two way panel data regression model with the actual value 
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